Halogen bonding in (Z)-2-iodocinnamaldehyde.

نویسندگان

  • Pakorn Bovonsombat
  • Francesco Caruso
  • Andrew Jdaydani
  • Miriam Rossi
چکیده

Based on the bulkiness of the iodine atom, a non-planar conformation was expected for the title compound. Instead, its molecular structure is planar, as experimentally determined using single crystal X-ray diffraction, and confirmed theoretically by DFT calculations on the single molecule and the halogen pair paired molecules, therefore ruling out crystal packing forces as a principal factor leading to planarity. Indeed, planarity is ascribed to the carbonyl double bond, as when this bond is saturated on forming the related alcohol derivative, the molecule loses planarity. The X-ray molecular structure shows an intermolecular separation between the iodine and the oxygen of the carbonyl shorter than the corresponding van der Waals distance suggesting a weak halogen bond interaction. DFT minimization of this 2-molecule arrangement shows the iodine--oxygen distance much shorter than that observed in the crystal interaction and confirming its stronger halogen bond nature. A trend between increasing I•••O(carbonyl) separation and decreasing C-I•••O(carbonyl) angle is demonstrated, further confirming the existence of a halogen bond.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interplay Between Lithium Bonding and Halogen Bonding in F3CX•••YLi•••NCCN and F3CX•••NCCN•••LiY Complexes (X = Cl, Br; Y = CN, NC)

MP2 calculations with cc-pVTZ basis set were used to analyze intermolecular interactions in F3CX···YLi···NCCN and F3CX···NCCN···LiY triads (X = Cl, Br; Y = CN, NC) which are connected via halogen and lithium bonds. Those complexes with the role of LiY as halogen acceptor and lithium donor show cooperativity with energy values ranging between -1.97 and -2.92 kJ mol...

متن کامل

Halogen Interactions in Protein-Ligand Complexes: Implications of Halogen Bonding for Rational Drug Design

Halogen bonding interactions between halogenated ligands and proteins were examined using the crystal structures deposited to date in the PDB. The data was analyzed as a function of halogen bonding to main chain Lewis bases, viz. oxygen of backbone carbonyl and backbone amide nitrogen. This analysis also examined halogen bonding to side-chain Lewis bases (O, N, and S) and to the electron-rich a...

متن کامل

Correlating conduction properties with the molecular symmetry: segregation of Z and E isomers in the charge-assisted, halogen-bonded cocrystal [(Z,E)-Me2I2TTF]2Br.

The Z and E isomers of the iodinated TTF derivative (Z,E)-Me2I2-TTF co-crystallize in a mixed-valence salt with Br(-) anions, and are segregated into Z and E stacks, each of them with a different charge localization pattern, which also revealed charge-assisted halogen bonding.

متن کامل

Methyl (2Z)-2-bromo­methyl-3-(2,4-dichloro­phen­yl)prop-2-enoate

In the title compound C11H9BrCl2O2, which represents the Z isomer, the methyl-acrylate moiety is essentially planar within 0.039 (2) Å and has an extended trans configuration. The benzene ring makes a dihedral angle of 28.3 (1)° with the mean plane of the methyl-acrylate moiety. The crystal packing is characterized by C-H⋯O hydrogen bonding and halogen-halogen inter-actions [Cl⋯Cl = 3.486 (3) Å...

متن کامل

Theoretical description of halogen bonding – an insight based on the natural orbitals for chemical valence combined with the extended-transition-state method (ETS-NOCV)

In the present study we have characterized the halogen bonding in selected molecules H3N-ICF3 (1-NH 3 ), (PH3)2C-ICF3 (1-CPH 3 ), C3H7Br-(IN2H2C3)2C6H4 (2-Br), H2-(IN2H2C3)2C6H4 (2-H 2 ) and Cl-(IC6F5)2C7H10N2O5 (3-Cl), containing from one halogen bond (1-NH 3 , 1-CPH 3 ) up to four connections in 3-Cl (the two Cl-HN and two Cl-I), based on recently proposed ETS-NOCV analysis. It was found base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 18 8  شماره 

صفحات  -

تاریخ انتشار 2013